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    Psoriasis is a common autoimmune skin dis-
ease aff ecting 1 – 2% of the population in North 
America and Europe. Over the years, psoriasis 
has been considered either a primary disease of 
keratinocytes or of T cells, with a strong genetic 
component ( 1 ). Until recently, IFN- �  – produc-
ing Th1 cells were implicated as the main patho-
genic cells ( 2 ), as certain T cell – targeted therapies 
were successful in clearing psoriasis ( 1 ), and clonal 
T cells have been found in psoriatic skin ( 3 ). 
However, we are beginning to appreciate that 
there may be an important pathogenic contribu-
tion from a recently recognized subset of T cells: 
Th17 cells producing IL-17 and IL-22 ( 2, 4 ). 
In model systems, IL-17 stimulates keratinocyte 
production of innate infl ammatory  “ danger sig-
nals ”  such as defensins and S100 proteins, as 
well as IL-8 neutrophil chemokine ( 5 ), whereas 
IL-22 modulates defensins ( 6 ) and keratinocyte 
hyperproliferation ( 7, 8 ). Upstream inducers of 
Th17 cells are still being understood, as most ex-
periments have been performed in mouse model 

systems. Mediators may include IL-1, IL-6, and 
TGF- � , which stimulate the diff erentiation of 
naive CD4 +  T cells into activated memory Th17 
cells ( 9 – 11 ), and IL-23, which drives Th17 cell 
proliferation ( 12 ). 

 Th17 T cells producing IL-17 and IL-22 
have been implicated as pathogenic in mouse 
models of autoimmune diseases such as experi-
mental autoimmune encephalomyelitis (EAE), 
collagen-induced arthritis, and infl ammatory 
bowel disease (IBD) ( 13 – 16 ). IL-17 knockout 
mice are resistant to both EAE and collagen-
induced arthritis. Also, mice with EAE have in-
creased numbers of Th17 cells but are resistant 
to disease if immunized against IL-17 ( 17 ). The 
DC product IL-23, a survival factor for Th17 
cells, also appears to be necessary for IBD patho-
genesis in mice ( 18 ). Thus, a model is emerging 
of autoimmune infl ammation that begins with 
activated APCs producing IL-23, subsequent 
Th17 cell proliferation and IL-17/IL-22 release, 
and downstream infl ammatory tissue damage. 

 Most studies of Th17 cells have been per-
formed in mouse models or in vitro. However, 
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 Biological agents have dramatically improved treatment options for patients with severe 

psoriasis. Etanercept (tumor necrosis factor [TNF] receptor – immunoglobulin fusion protein) 

is an effective treatment for many psoriasis patients, and blockade of TNF is considered to 

be its primary action. However, in this clinical trial, we show that etanercept has early 

inhibitory effects on a newly appreciated type of T cells: T helper type 17 (Th17) cells. 

Etanercept reduced the infl ammatory dendritic cell products that drive Th17 cell prolifera-

tion (interleukin [IL] 23), as well as Th17 cell products and downstream effector molecules 

(IL-17, IL-22, CC chemokine ligand 20, and  � -defensin 4). In contrast, Th1 cellular prod-

ucts and effector molecules (interferon  � , lymphotoxin  � , and myxovirus resistance 1) were 

reduced late in disease resolution. This study suggests a role for Th17 in addition to Th1 

cells in the pathogenesis of psoriasis. Th17 cells may be particularly important in driving 

epidermal activation in psoriatic plaques, whereas Th1 cells must also be eliminated for 

fi nal disease resolution. 
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diff erentiation, and proliferation were all rapidly down-mod-
ulated at week 1 of treatment. 

 Infl ammatory infi ltrate in psoriasis skin was reduced 

with etanercept treatment 

 Nonlesional skin contained relatively low numbers of CD11c +  
myeloid DCs, CD3 +  T cells, and CD163 +  macrophages ( Fig. 
1 C ). In psoriasis plaques, infl ammatory cell numbers were 
increased two to four times above normal. Little or no change 
in infl ammatory cell infi ltrate was seen by week 1 of etaner-
cept treatment. By week 2, cell numbers began to decrease but 
did not approximate baseline values until week 12. At week 12, 
CD11c, CD3, and CD163 cell counts were not signifi cantly 
diff erent from nonlesional values. Representative immuno-
histochemistry for CD11c, CD3, and CD163 antigens at each 
biopsy time point is shown in  Fig. 1 D . Therefore, decreased 
dermal infl ammatory infi ltrate with etanercept treatment lagged 
behind decreased keratinocyte thickness. 

 Etanercept rapidly down-modulated Th17 cell products 

and had a delayed effect on Th1 and Th2 cell products 

 IL-17 and IL-22, the hallmark cytokines of Th17 cells, were 
rapidly down-modulated in histologic responders by weeks 1 
(P = 0.05) and 2 (P = 0.05) of etanercept treatment, respec-
tively ( Fig. 2 A ).  Variability in IL-17 expression at weeks 
2 and 4 resulted in p-values that approached signifi cance 
(P = 0.056 and 0.057, respectively). In contrast, IFN- � , the 
hallmark cytokine of Th1 cell response, was not down-modu-
lated until week 12 (P  <  0.01;  Fig. 2 B ). Lymphotoxin  �  
(LTA) – 1, another Th1 response cytokine, was also down-
modulated at week 12 (P  <  0.05;  Fig. 2 C ). 

 To assess the biological signifi cance of early Th17 cytokine 
down-modulation and late Th1 cytokine down-modulation 
with etanercept treatment, we used multivariate U-statistics to 
cor relate a  “ Th17 score ”  (a composite of IL-17 and IL-22 mRNA 
expression values) or  “ Th1 score ”  (a composite of IFN- �  and 
LTA-1 expression values) and correlated them with an histo-
logical disease improvement  “ response score ”  (epidermal 
thickness, K16 expression, and Ki67 counts;  Fig. 2 C ). There 
was a strong correlation between Th17 cytokines and the 
epidermal response score (R = 0.89; P = 3.7  ×  10  − 6 ) and less 
so between Th1 cytokines and the epidermal response score 
(R = 0.48; P = 0.055). We further confi rmed the biological 
signifi cance of early Th17 cell down-modulation by measur-
ing genes regulated by IL-17, CC chemokine ligand (CCL) 
20, and  � -defensin 4 (DEFB4;  Fig. 2 D ). CCL20 and DEFB4 
were both down-modulated by week 1 of etanercept treat-
ment (P = 0.01 and 0.05, respectively) and were consistently 
suppressed at all weeks of treatment. In contrast, an IFN- �  –
 regulated gene, myxovirus resistance 1 (MX-1), was not sig-
nifi cantly reduced until week 4 (P = 0.05) and even more 
strongly suppressed by week 12 (P  <  0.001;  Fig. 2 E ). Also of 
interest was IL-4, the defi ning cytokine of the Th2 cell, 
which was up-regulated at week 12 (P = 0.09;  Fig. 2 F ). 

 Other infl ammatory cytokines rapidly down-modulated 
with etanercept were IL-1 �  (week 1, P  <  0.01), IL-6 (week 2, 

there are some human data also supporting a similar model of 
Th17 cell – mediated autoimmune infl ammation. Patients 
with IBD have elevated IL-17 and IL-22 in aff ected colonic 
tissue and serum, depending on disease activity and severity 
( 19 – 21 ), and patients with rheumatoid arthritis have elevated 
IL-17 and IL-22 protein in synovial fl uid ( 22, 23 ). In psoriasis 
patients, IL-17 messenger RNA (mRNA) has been demon-
strated within lesions ( 24 ), but protein levels are not increased 
in the serum ( 25 ). IL-22 protein is increased in psoriatic se-
rum compared with normal, and mRNA is increased in le-
sional tissue ( 6 ). High levels of IL-23 have also been detected 
in psoriasis lesions ( 26 ) and are strongly diminished by eff ec-
tive therapies for psoriasis ( 27 ). 

 Biological treatments provide researchers with tools to 
directly target components of the immune system and begin 
to dissect molecular circuitry and pathogenic pathways. 
Treatment of psoriasis patients with etanercept, a TNFR-Ig 
fusion protein, presents an opportunity to further understand 
the eff ects of blocking TNF at molecular and cellular levels. 
The comparative modulation of Th17 versus Th1 cell activa-
tion in psoriasis within the context of a therapeutic trial has 
not been previously reported. We found that psoriasis disease 
improvement correlated with the rapid down-modulation of 
DC and Th17 cell products and downstream eff ector mole-
cules, and the fi nal disease resolution correlated with the late 
down-modulation of Th1 cells. 

  RESULTS  

 Clinical and histological responses 

 In this study, 20 patients were given 50 mg etanercept bi-
weekly for 12 wk. Psoriasis area and severity index (PASI) was 
decreased by a mean of 36% (range = 9 – 67%) after 4 wk of 
treatment and 69% (range = 33 – 96%) after 12 wk of treatment 
( Fig. 1 A ). The time course and extent of improvement with 
biweekly etanercept treatment in this trial were similar to out-
comes seen in larger, double-blind clinical trials ( 28, 29 ). 

 The eff ects of etanercept on disease histopathology, epi-
dermal thickness, expression of keratin 16 (K16; immuno-
histochemistry and quantitative mRNA measures), and Ki67 
cell counts are illustrated in  Fig. 1 (A and B) .  After 12 wk of 
treatment, epidermal thinning and normalization of keratino-
cyte diff erentiation occurred in 16 out of 20 patients, who we 
considered to be histological responders ( 30 ). The data presented 
are from the 16 histological responders to study immunologic 
response within the target lesion. 

 The mean PASI score for histological responders was 7.1 
(range = 0.6 – 22; SEM = 1.4), with a mean percent clearance 
of 74.5 (range = 38.9 – 97.5; SEM = 4.9;  Fig. 1 A ). Mean epi-
dermal thickness was signifi cantly reduced by week 1 com-
pared with baseline lesional skin (P  <  0.05). K16 mRNA 
levels (a measure of epidermal regenerative activation) and 
Ki67 cell numbers per millimeter (a measure of keratinocyte 
proliferation) were also signifi cantly reduced by week 1 (P  <  
0.001 and 0.01, respectively). Representative hematoxylin 
and eosin, K16, and Ki67 immunostainings for a responding 
patient are shown ( Fig. 1 B ). Thus, keratinocyte acanthosis, 



JEM VOL. 204, December 24, 2007 

ARTICLE

3185

 Figure 1.   Clinical and histological resolution of psoriasis with etanercept treatment. (A) Mean PASI scores, epidermal thickness, K16 mRNA expres-

sion, and Ki67 cell counts in histological responders ( n  = 16) during treatment with etanercept. Clinical response was measured at baseline and weeks 1, 2, 4, 

and 12; biopsies were evaluated in nonlesional skin (NL), lesional skin (LS), and in the lesional index plaque at weeks 1, 2, 4, and 12. Error bars represent the 

mean  ±  SEM. Baseline lesional values were compared with other time points. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. (B) Histology and immunohistochemistry 

showing hematoxylin and eosin (H & E), K16, and Ki67 expression during treatment. Bar, 100  � m. (C) CD11c +  myeloid DCs, CD3 +  T cells, and CD163 +  macro-

phages per millimeter in nonlesional skin (NL), lesional skin (LS), and in the lesional index plaque at weeks 1, 2, 4, and 12. Horizontal bars represent the mean. 

Baseline lesional values were compared with other time points. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. Ki67, CD11c, and CD3 baseline lesional cell counts have 

been previously reported (reference  50 ). (D) Immunohistochemistry showing CD11c, CD3, and CD163 expression during treatment. Bar, 100  � m.   
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label immunofl uorescence showing  > 90% colocalization 
(yellow color) of IL-20 antigen with CD11c antigen in base-
line lesional sections ( Fig. 3 B ). IL-20 + CD11c +  cells were 
clustered in elongated dermal papillae, where there is an ex-
tensive vascular supply, and a few cells invaded the epidermis. 
At week 2 of etanercept treatment,  < 10% of CD11c +  cells 
produced IL-20, and by week 12 no visible overlap was ap-
parent. Similarly, IL-23 p40 subunit was produced by 100% 
of CD11c +  cells in psoriasis lesional skin but was not detected 
at weeks 2 and 12 of etanercept treatment ( Fig. 3 C ). 

 TNF was produced in  > 95% of CD11c +  DCs within un-
treated psoriasis plaques, as indicated by the yellow cells clus-
tering near the dermal – epidermal junction and infi ltrating 
the epidermis ( Fig. 3 D ). At weeks 2 and 12 of etanercept 
treatment, no visible overlap was apparent. iNOS protein 
in CD11c +  DCs is also down-modulated by etanercept treat-
ment, as previously described by our group ( 30 ). Hence, 
iNOS, TNF, IL-20, and IL-23 are TipDC products down-
modulated within the fi rst 2 wk of etanercept treatment. 

 Myeloid DCs in the skin down-regulated maturation 

markers by week 2 of etanercept treatment 

 Single antigens specifi c for mature DC identifi cation include 
CD83 and/or DC – lysosomal-associated membrane protein 

P  <  0.05), and IL-8 (week 1, P  <  0.01), fi ndings that were pre-
viously reported by our group at 1 mo, the earliest time point of 
that study ( 30 ). In contrast, TGF- �  was not signifi cantly altered 
with treatment (Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20071094/DC1). In summary, although Th17 
cell products and downstream eff ector molecules regulating ke-
ratinocyte hyperplasia are modulated rapidly during the course 
of etanercept treatment, Th1 and Th2 cell products are modu-
lated late, months after the disease has signifi cantly improved. 

 Products of TNF – inducible NO synthase 

(iNOS) – producing DCs (TipDCs) were rapidly 

down-modulated with etanercept treatment 

 We have previously described the TipDC as a major pathogenic 
cell in psoriasis ( 27 ). Using RT-PCR and double-label immuno-
fl uorescence, we show that TipDC products were rapidly down-
modulated with etanercept treatment ( Fig. 3 A ).  iNOS mRNA 
was signifi cantly decreased by week 2 (P  <  0.05), IL-20 mRNA 
was decreased by week 1 (P  <  0.05), and both IL-23 subunits 
(p19 and p40) were reduced by weeks 1 and 2 (P = 0.06 and 
P  <  0.05, respectively). In contrast, transcription of the IL-12 
p35 subunit was not modulated by etanercept. 

 We confi rmed that IL-20 was primarily a product of 
CD11c +  myeloid DCs in untreated psoriasis using double-

 Figure 2.   Th17 cell products and downstream mediators are rapidly down-modulated with etanercept treatment compared with Th1 and 

Th2 cell products. mRNA expression normalized to HARP for (A) Th17 cell products IL-17 and IL-22 and (B) Th1 cell products IFN- �  and LTA-1. Error bars 

represent the mean  ±  SEM. (C) Multivariate U-statistics correlating the change in Th17 or Th1 cell products with histological response (epidermal thick-

ness, K16, and Ki67) over time. (D) Downstream effectors of Th17 cells, CCL20, and DEFB4. (E) MX-1, downstream effector of Th1 cells. (F) Th2 cell product 

IL-4. All mRNA was evaluated in nonlesional skin (NL), lesional skin (LS), and in the lesional index plaque at weeks 1, 2, 4, and 12. Error bars represent the 

mean  ±  SEM. Baseline lesional values were compared with other time points. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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SEM = 6.8;  Fig. 4 B ) DCs suggests that mature DCs were 
a subset of lesional DC infi ltrate. 

 Maturation of migrant dermal DCs, as measured by levels 
of surface co-stimulatory molecules, was also decreased by 
week 2 of etanercept treatment ( Fig. 4 C ). Using FACS anal-
ysis, we gated on cells that met the classic defi nition of DCs 
(Lin  −  CD11c + HLA-DR + ) and determined the expression levels 
of CD86, HLA-DR, CD40, and CD11c on cells emigrating 
from the dermis at baseline (week 0) and week 2 ( n  = 5 patients). 

(DC-LAMP). In responding patients, CD83 +  DCs were scat-
tered throughout the psoriatic epidermis and upper dermis, 
whereas DC-LAMP +  DCs aggregated together in clusters in 
the upper reticular dermis ( Fig. 4 A ).  CD83 and DC-LAMP 
were signifi cantly decreased by weeks 1 and 2 of etanercept 
treatment (P  <  0.01 and 0.05, respectively;  Fig. 4 B ). The 
larger mean number of CD11c +  myeloid cells in lesional skin 
(247 cells/mm; SEM = 31.9;  Fig. 1 C ) compared with CD83 +  
(9 cells/mm; SEM = 3;  Fig. 4 B ) and DC-LAMP +  (49 cells/mm; 

 Figure 3.   Infl ammatory DC products are rapidly down-modulated with etanercept treatment. (A) mRNA expression normalized to HARP for the 

infl ammatory DC cell products iNOS, IL-20, IL-23 p19, IL-23/IL-12 p40, and IL-12 p35 in nonlesional skin (NL), lesional skin (LS), and in the lesional index 

plaque at weeks 1, 2, 4, and 12. Baseline lesional values were compared with other time points. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. (B – D) Double-label 

immunofl uorescence of myeloid DCs (CD11c) and various mediators (IL-20, IL-12/23 p40, and TNF) demonstrating coexpression (yellow) in baseline 

lesional skin compared with weeks 2 and 12, showing a reduction in myeloid DCs and their products with etanercept treatment. (B) CD11c (green) and 

IL-20 (red); (C) CD11c (green) and IL-23/IL-12 p40 (red); and (D) CD11c (red) and TNF (green). The white lines identify the dermal epidermal junction. Auto-

fl uorescent keratinocytes appear in all panels. Bar, 100  � m.   
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 Etanercept blocked in vitro – derived DC maturation and IL-23 

production and immunostimulatory capacity, and shifted 

differentiation toward a macrophage-like phenotype 

 Monocyte-derived DCs (MoDCs) cultured with etanercept 
decreased CD86 expression threefold and HLA-DR expression 
fi vefold ( Fig. 5 A ).  CD11c expression decreased slightly, as 
did cell complexity (side scatter – area). RT-PCR on three 
paired biological replicates showed a signifi cant decrease in 
IL-23 subunits p19 and p40 (P = 0.02 and 0.05, respectively), but 
there was no signifi cant decrease in IL-12 subunit p35 (P = 0.25; 
Fig. S2, available at http://www.jem.org/cgi/content/full/

At baseline, there was a subset of CD86 hi HLA-DR hi  cells that 
was not present after 2 wk of etanercept treatment. Mean 
fl uorescence intensity (MFI) of the DC activation markers 
CD86, HLA-DR, and CD40 decreased in all week-2 samples 
(a representative patient is shown in  Fig. 4 C ). The myeloid 
lineage marker CD11c was decreased in three samples and 
increased in two samples. Cell size (foward scatter – height) and 
complexity (side scatter – area) decreased in all samples (unpub-
lished data). Thus, myeloid dermal DC activation (CD86, 
HLA-DR, and CD40) and cell size/complexity are reduced by 
week 2 of etanercept treatment compared with baseline. 

 Figure 4.   DCs down-regulate maturation and co-stimulatory molecules with etanercept treatment. (A) Immunohistochemistry for the mature 

DC markers CD83 and DC-LAMP in nonlesional skin (NL), lesional skin (LS), and in the lesional index plaque at weeks 1, 2, 4, and 12. Bar, 100  � m. (B) Quan-

tifi cation of CD83 +  and DC-LAMP +  cells per millimeter ( n  = 16) during etanercept treatment. Horizontal bars represent the mean. Baseline lesional values 

were compared with other time points. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. CD83 and DC-LAMP baseline lesional cell counts have been previously re-

ported (reference  50 ). (C) FACS analysis at baseline (week 0) and matched week 2 etanercept-treated lesional dermal single-cell suspensions. Acquired cells 

were gated on myeloid DCs (Lin  −  HLA-DR + CD11c + ; dark gray). MFI is indicated in the top right corner of each histogram; isotypes are shown in light gray.   
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the stimulation of T cells alone or T cells stimulated with 
CD3/CD28 beads ( Fig. 5 B ). 

 Gene array on control MoDCs compared with those cul-
tured with etanercept revealed that CD163, a macrophage 
scavenger receptor, was strongly up-regulated (6.5-fold increase; 

jem.20071094/DC1). Likewise, IL-6 was down-regulated 
(P = 0.04), whereas TGF- � 1 was up-regulated (P = 0.05). 
MoDCs cultured with etanercept were also an average of 
two to threefold less stimulatory than control DCs in a mixed 
leukocyte reaction (MLR;  n  = 2). Etanercept did not aff ect 

 Figure 5.   In vitro MoDCs generated in the presence of etanercept are less mature and less immunostimulatory, and express macrophage 

antigen CD163. (A) FACS analysis of MoDCs generated without or with etanercept. Acquired cells were gated on myeloid DCs (Lin  −  HLA-DR + CD11c + ; dark 

gray). MFI is indicated in top right corner of each histogram; isotypes are shown in light gray. (B) MLR comparing MoDCs matured with and without etan-

ercept (T cells + iDC). T cells alone and T cells + CD3/28 beads serve as negative and positive controls, respectively. The percentage of proliferation is indi-

cated in the bottom left corner of each FACS plot. (C) Comparison of CD163 mRNA expression (gene array) in MoDCs generated without (blue) or with 

(red) etanercept. Error bars represent the mean  ±  SEM. *, P  <  0.05. (D) Increased surface expression of CD163 on MoDCs generated with etanercept was 

confi rmed by fl ow cytometry. CFDA, carboxyfl uorescein diacetate; iDC, infl ammatory DC.   
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to  Listeria monocytogenes  infection ( 37 ). In a previous clinical 
trial using etanercept, iNOS mRNA and protein, along with 
various other DC and T cell infl ammatory cytokines and 
chemokines, were decreased by 1 mo of treatment (the earliest 
time point in that study) ( 30 ). Our current study uses even 
earlier time points to recreate the hierarchy of TNF-dependent 
mediators and separate primary (early) versus secondary (late) 
responses. We now show that multiple infl ammatory products 
of TipDCs, including iNOS, TNF, IL-20, and IL23 p40 sub-
unit, are reduced within 1 – 2 wk after beginning etanercept, 
whereas the number of CD11c +  DCs in the tissue is mini-
mally aff ected during this time, suggesting an initial blockade of 
cytokine production by these cells rather than cell reduction. 
This suggests that TNF is an autocrine or paracrine inducer 
of TipDC infl ammatory products that is blocked by etanercept. 
This direct eff ect on DCs is supported by our in vitro studies 
with MoDCs showing that etanercept blocked up-regulation of 
co-stimulatory and MHC class II molecules, IL-23 production, 
and immunostimulatory capacity. 

 The early modulation of TipDCs by etanercept may rap-
idly aff ect Th17 cells, beginning the process of molecular res-
olution before reduction in cellular infi ltrates and long before 
clinical resolution. Our proposed psoriatic infl ammatory path-
way involves the production of IL-23 from these infl ammatory 
TipDCs causing proliferation of Th17 cells, with subsequent 
induction of IL-17, IL-22, and other products ( Fig. 6 ).  IL-17 
appears to serve as an inducer of keratinocytes to produce anti-
microbial peptides like DEFB4, S100 acute-phase proteins, 
and chemokines such as IL-8 ( 38 ). Models of psoriasis suggest 
that IL-22 strongly induces keratinocyte hyperplasia and medi-
ates IL-23 – induced dermal infl ammation and acanthosis ( 7 ). 
All of these products were down-modulated within 1 – 2 wk of 
etanercept treatment. The involvement of Th17 cells in psoriasis 
may now help explain the following: hyperplasia of psoriatic 
keratinocytes (IL-22); why psoriatics are relatively protected 
from bacterial infection (defensins); and why neutrophils that are 
normally reserved for acute infl ammatory processes appear in 
a chronic infl ammatory disease (IL-8). Moreover, histological 
resolution of the disease, as defi ned by decreased epidermal 
thickness and normalization of keratinocyte proliferation (Ki67) 
and diff erentiation (K16), correlates with rapidly decreased 
TipDC and Th17 cell products. Thus, these results suggest that 
Th17 cells are important for disease pathogenesis and may be 
modifi ed by etanercept at an early time point. 

 Finally, although there is an emerging role for Th17 cells 
driving infl ammation in psoriasis, Th1 cells may still be im-
portant for fi nal disease resolution. Although TipDC and 
Th17 cell products are down-modulated within 2 wk of 
etanercept treatment, IFN- �  is not decreased until week 12, 
and STAT-1 (an IFN- �  – dependent transcription factor) is 
not signifi cantly decreased until several months of treatment 
( 30 ). Therefore, although histological disease resolution be-
gins within weeks, complete remission does not occur until 
after several months of treatment, when both Th17 and Th1 
cell products have been down-modulated. IFN- �  is a major 
inducer of MHC class II and acts synergistically with IL-17 

P  <  0.05;  Fig. 5 C ). We confi rmed these results using FACS 
analysis and identifi ed up-regulation of CD163 protein on 
CD11c +  cells matured with etanercept compared with con-
trol DCs ( Fig. 5 D ). Etanercept had no signifi cant eff ect on 
the expression of Th1 (IFN- � ) or Th17 (IL-17 and IL-22) 
cytokine mRNAs in activated T cells with or without etan-
ercept ( n  = 3; unpublished data). 

 The small number of nonresponders in this trial ( n  = 4) 
limits statistical comparison with responders ( n  = 16). How-
ever, for interest, we have included data from nonresponders 
in Fig. S3 (available at http://www.jem.org/cgi/content/
full/jem.20071094/DC1). Of note, the IL-17 response genes 
CCL20 and DEFB4 are not down-modulated as rapidly or 
consistently in nonresponders (Fig. S3 C) as they are in re-
sponders ( Fig. 2 D ). Reactive epidermal hyperplasia is also 
not suppressed to the same extent as in responders. 

  DISCUSSION  

 This study contains new information that informs two sepa-
rate but related topics: the therapeutic mechanisms of the 
TNF inhibitor etanercept, and the network of infl ammatory 
cytokines and leukocytes that drive psoriasis pathogenesis. 
Presently, there are three TNF inhibitors in widespread use 
for the treatment of psoriasis, psoriatic arthritis, rheumatoid 
arthritis, IBD, and ankylosing spondylitis: infliximab and 
adalimumab, which are monoclonal TNF antibodies, and etan-
ercept, which is a dimeric TNFRII Fc fusion protein ( 31, 32 ). 
Although often considered as a therapeutic class, these agents 
are structurally diff erent, have diff erent affi  nities for TNF, and 
are not uniformly eff ective for all infl ammatory diseases ( 33 ). 
Although more than one million patients have been treated 
with these drugs, there are surprisingly little data on therapeutic 
mechanisms in human infl ammatory diseases. In this paper, 
we show that psoriasis disease improvement correlated with 
early reduction in DC and Th17 cell products and downstream 
eff ector molecules, and fi nal disease resolution correlated with 
late down-modulation of Th1 cells. 

 When considering previous research on the TNF inhibi-
tor mechanism, it is useful to divide response into early (hours 
to days) versus late (weeks to months) eff ects. In the case of 
infl iximab and adalimumab, there are studies suggesting that 
broad apoptosis of infl ammatory leukocytes is induced within 
hours of drug delivery ( 34, 35 ). With these agents, the reduc-
tion of cytokine-driven infl ammation is likely a combination 
of inhibition of TNF-dependent cytokine production, as 
well as reducing cytokine-producing cells via apoptosis. Early 
apoptosis, however, is not a feature of etanercept treatment. 
Experiments on psoriasis lesions show some leukocyte apoptosis 
after 1 mo of treatment ( 36 ), suggesting that apoptosis is a sec-
ondary mechanism after growth factor/TNF withdrawal. 

 In this paper, we propose that an early mechanism of 
etanercept is to inhibit infl ammatory DC cytokine production 
and maturation, leading to a reduction in the activity of Th17 
cells. Recently, a new type of infl ammatory myeloid CD11c +  
DC was described in psoriasis, the TipDC ( 27 ). This cell type 
was fi rst identifi ed in a mouse model of innate immune response 
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nonlesional magnitude by week 12 ( 30 ). All data shown are from the 16 

responder patients. 

 Immunohistochemistry.   Tissue sections were stained with hematoxylin 

(Thermo Fisher Scientifi c) and eosin (Shandon) or with purifi ed mouse 

anti – human monoclonal antibodies to K16 (clone K8.12, 1:1,000; Sigma-

Aldrich), Ki67 (Mib-1, 1:100; Immunotech), CD11c (B-ly6, 1:100; BD 

Biosciences), CD3 (Sk7, 1:100; BD Biosciences), CD163 (5C6-FAT, 1:100; 

Acris Antibodies), CD83 (HB15e, 1:100; BD Biosciences), or DC-LAMP 

(104.G4, 1:50; Beckman Coulter). Biotin-labeled horse anti – mouse antibodies 

(Vector Laboratories) were amplifi ed with avidin – biotin complex (Vector 

Laboratories) and developed with chromogen 3-amino-9-ethylcarbazole 

(Sigma-Aldrich). Positive cells per millimeter were counted manually using 

computer-assisted image analysis software (Image, version 6.1; National Institutes 

of Health [NIH]). Appropriate isotype controls were used. 

 Immunofl uorescence.   Frozen skin sections were fi xed with acetone and 

blocked in 10% normal goat serum (Vector Laboratories) for 30 min. Primary 

antibodies CD11c (B-ly6, 1:100) or CD11c-FITC (3.9, 1:100; Invitrogen) 

were incubated overnight at 4 ° C, followed by secondary antibodies IL-20 

(158609, 1:10; R & D Systems), IL-23/IL-12 p40 (31052.11, 1:50; R & D 

Systems), or TNF- �  – FITC (6401.111, 1:25; BD Biosciences) again overnight at 

4 ° C. FITC-labeled antibodies were amplifi ed with anti-FITC Alexa Fluor 488, 

whereas other antibodies were amplifi ed with goat anti – mouse IgG1 conjugated 

to Alexa Fluor 568. All primary and secondary antibodies were IgG1 isotype. 

Images were acquired using the appropriate fi lters from a microscope (Axio-

plan 2I; Carl Zeiss, Inc.) with a numerical aperture lens (Plan-Apochromat 

20 × /0.7; Carl Zeiss, Inc.) and a cooled charge-coupled device camera 

(ORCA-ER; Hamamatsu) controlled by MetaVue software (MDS Analytical 

Technologies). Dermal collagen fi bers gave green autofl uorescence. FITC-

conjugated antibodies gave background epidermal fl uorescence. 

 Tissue mRNA gene expression.   RNA was extracted from skin biopsies 

frozen in liquid nitrogen using the RNeasy Mini Kit (QIAGEN). RT-PCR 

was performed using EZ PCR core reagents, primers, and probes (Applied 

Biosystems), as previously described ( 44 ). The primers and probes for TaqMan 

to up-regulate keratinocyte intracellular adhesion molecule 
(ICAM) – 1 and IL-8 production ( 39 ), suggesting that Th1 
cells may be important for leukocyte activation. Activated T 
cells are required in the epidermis for psoriasis to develop 
( 40 ), and most epidermal T cells are type 1 CD8 +  cells ( 41 ); 
it follows that they must be ablated for disease resolution. 
Thus, although Th17 cells may be the major drivers of kera-
tinocyte hyperplasia and infl ammatory cytokine production, 
Th1 cells may be important for leukocyte activation and for 
sustaining a network of  > 100 genes linked to IFN- �  signal-
ing ( 42 ). In addition, there may be important functional 
interactions between Th17 and Th1 cells, as cross-regula-
tion has been recently demonstrated in model systems ( 15, 
43 ). More work needs to be done to delineate the specifi c 
roles of Th17 and Th1 cells in psoriasis and in other exam-
ples of autoimmune infl ammation. 

 MATERIALS AND METHODS 
 Patient studies and classifi cation.   20 adult patients with moderate to 

severe psoriasis were treated with 50 mg etanercept (ENBREL; Amgen) 

subcutaneously biweekly for 12 wk under a Rockefeller University Insti-

tutional Review Board – approved protocol. Patients did not receive topical 

or systemic psoriasis therapy for a minimum of 1 mo before dosing. No 

patient was experiencing fl are at the initiation of etanercept treatment. 

At baseline, 6-mm (diameter) punch biopsies were taken from an uninvolved 

area (nonlesional) and from an index psoriasis lesion. Punch biopsies were 

obtained again from the index lesion at weeks 1, 2, 4, and 12 of etanercept 

treatment. All biopsies were cut in half: one piece was frozen in liquid ni-

trogen for RNA extraction, and the other was frozen in cutting media for 

immunostaining. 3-cm 2  shave biopsies used for FACS analysis on dermal 

 é migr é s were obtained from lesional areas at baseline and week 2. Patients 

were classifi ed as histological responders based on frozen section epider-

mal thickness, K16 immunostaining, and Ki67 cell counts decreasing to 

 Figure 6.   Proposed role of Th17 and Th1 cells in psoriasis pathogenesis. TNF stimulates CD11c +  infl ammatory DCs to produce IL-23 and IL-20. DC acti-

vation and production of IL-23 supports Th17 cell survival and proliferation and induces the production of IL-17 and IL-22. DC and Th17 cell products activate 

keratinocytes, promoting the release of innate infl ammatory molecules such as DEFB4, S100A7, and IL-8. Concurrently, Th1 cells producing IFN- �  activate 

keratinocytes to up-regulate MHC class II molecules (HLA-DR) and integrins (ICAM), and release cytokines including membrane Ig (MIG) and IFN-inducible protein 

10 (IP-10). Th1 and Th17 cells may suppress each other ’ s development, but IFN- �  can also act synergistically with IL-17 to increase ICAM expression and IL-8 release 

from keratinocytes. In psoriasis, etanercept may proximally inhibit this IL-23 – IL-17 pathway to normalize keratinocyte proliferation and leukocyte infi ltration.   
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ized to the Human Genome U133A 2.0 Array (14,500 probe sets; Aff ymetrix). 

The chips were washed, stained with streptavidin-PE, and scanned with a scanner 

(GeneArray; Hewlett-Packard Company). Raw fl uorescence intensity values 

were analyzed using GeneChip operating software (version 1.2; Aff ymetrix) and 

GeneSpring software (Agilent Technologies). Data for triplicates were averaged. 

Microarry data have been deposited in the National Center for Biotechnology 

Information Gene Expression Omnibus under accession no.  GSE9239 . 

 Statistical analysis.   All clinical variables were analyzed using repeated 

measures analysis of variance models using the MIXED procedure (available 

from SAS). The within-subjects correlation that best modeled the data was 

an AR(1) structure that considered each time measurement as dependent on 

the previous one. Diff erences between lesional (baseline) and weeks 1, 2, 4, 

and 12 were estimated, and the one-tail p-values are designated as follows: 
∗, P  <  0.05; ∗∗, P  <  0.01; and ∗∗∗, P  <  0.001. To assess the correlation be-

tween IL-17/IL-22 or IFN- � /LTA-1 with epidermal thickness/K16/Ki67, 

the muStat package (available at www.r-project.org) was used. U scores were 

computed for histological response and gene expression, taking into account 

the clustered structure of the data (time points for each patient), as previously 

described ( 49 ). Variables were normalized within patients to make all pa-

tients comparable. Correlation between the histological response score and 

the expression score was calculated, and its signifi cance is presented in the 

fi gures. In vitro gene array data that passed the Benjamini and Hochberg cor-

rection and had p-values  < 0.05 were considered relevant. 

 Online supplemental material.   Fig. S1 shows additional RT-PCR data 

for responders ( n  = 16). Fig. S2 shows RT-PCR from in vitro – derived DCs 

matured without (control) and with etanercept (+etanercept). Fig. S3 includes 

RT-PCRdata and histology from nonresponding patients ( n  = 4). Online 

supplemental material is available at http://www.jem.org/cgi/content/full/

jem.20071094/DC1. 
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